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Abstract 

In HVDC GIL high electric field stress, resulting from 
space charge accumulation due to DC condition, may ap-
pear. Functional graded materials (FGM) are a field con-
trol technique to reduce the intensity of the electric field. 
FGM is realized by a spatial distribution of the electric 
conductivity in the spacer material by filler particles. In 
this work, an optimized spatial distribution of the electric 
conductivity in the spacer material is investigated by nu-
merical simulation and by utilizing a deep neural network 
(DNN), in order to homogenize the electric field distribu-
tion optimally and to decrease the maximum electric field. 
The results show a decisive reduction of the electric field. 

1 Introduction 

High voltage direct currents (HVDC) are the key technol-
ogy to transmit electrical energy over long distance [1]. 
Additionally, space efficient devices are required in areas 
where space is limited. A possible solution for these chal-
lenges are HVDC gas insulated lines (GIL). GIL have the 
advantages of high power capacity, low losses, reliability 
and they provide a compact structure. GIL consist of an 
insulating gas, a conductor, a grounded enclosure and a 
massive spacer to sustain the system. As an insulating 
gas sulfur hexalfluoride (SF6) or SF6 mixed with nitrogen 
(N2) is mostly in use. The insulating material of the spacer 
is mostly epoxy resin [2]. Under DC conditions however, 
space charge accumulation occurs and may lead to local 
electric field stress in the system. This may lead to partial 
discharge processes or even system failure [3]. Hence, 
field control techniques are applied to decrease electric 
field stress. One such technique are functional graded 
materials (FGM), which are spatially distributed in the 
spacer material to obtain a spatial distribution of the elec-
tric conductivity [4]. Due to the slow charge accumulation, 
an electro-quasistatic field occurs, where the electric con-
ductivity of the insulating materials is decisive for the 
electric field distribution. Thus, higher electric conductiv-
ity values at high field stress locations lead to a decrease 
of the electric field. Numerical simulations allow to inves-
tigate these field control techniques. Therefore a simula-
tion model is developed with an optimized spatial distri-
bution of the electric conductivity in the spacer material 
by using a deep neural network [5]. The paper is 

organized as follows: after the introduction the simulation 
approach is examined. Subsequently the simulation re-
sults without the application of FGM are presented, fol-
lowed by the description of the DNN approach and the 
simulation results with the application of optimized FGM 
based on the DNN and the conclusion. 

2 Results 

Due to the axially symmetric arrangement of a GIL, mod-
elling a 2D axisymmetric geometry, which is depicted in 
Figure 1, is sufficient for realistic simulation results and 
enables to save numerical costs. The boundary condi-
tions are set as follows: the HV conductor has a potential 
of 𝜑 = 320 kV and the enclosure is grounded (𝜑 = 0 kV). 
In both x-directions Neumann boundary condition is de-
fined, which means in these directions the boundaries 
are perfectly electrically insulated. Between the HV con-
ductor and the enclosure is a temperature gradient of 35 
K. The heat flux is zero at the boundaries in x-direction. 
The simulations are solved with a stationary solver, using 
a tolerance-based termination of an iterative solver. 

  

Figure 1: Geometry of the HVDC GIL simulation model. 

The electric conductivity of the SF6-gas is defined with 

𝜅SF6 = 1 ∙ 10−18 S/m. The electric conductivity of the 
spacer material is defined by an empirical nonlinear con-
ductivity model, derived from leakage current measure-
ments of the spacer’s epoxy resin material, which fits the 
measurements results [1]: 

 𝜅(𝑇, |𝐸⃗ |) = 𝜅0 exp (−
𝑊𝐴

𝑘𝐵𝑇
) exp(𝜗|𝐸⃗ |), (1) 
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where 𝑘𝐵 = 8.617 ∙ 10−5 eV/K is the Boltzmann constant, 
𝑊A = 0.095 the activation energy, 𝜅0 and 𝜗 are constants. 

2.1 Electric field distribution without FGM 

The electric field distribution in the HVDC GIL simulation 
model without the application of FGM is depicted in Fig-
ure 2. Typical for DC condition, the electric field shows 
an inversion of the field distribution, with higher fields 
seen at the grounded enclosure and an electric field peak 
at the triple point between gas, spacer and ground. Here, 
the maximum electric field value is at 7.91 kV/mm. 

 

Figure 2: Electric field distribution without FGM. 

2.2 Electric field distribution with optimized FGM 
based on DNN 

The FGM is realized in the simulation model by multiply-
ing the electric conductivity model of the spacer material 
(1) with equation (2), which depends on the radius 𝑟: 

 𝑓(𝑟) = [1 + (𝑘𝑖 − 1) ∙ exp (−
𝑟𝑖−𝑟

𝑐
)] + [1 + (𝑘𝑎 − 1) ∙ 

exp (
𝑟𝑎−𝑟

𝑐
)]                                                                    (2) 

Equation (2) acts as prefactor function for the model (1) 
in form of a parabolic function, which represents a typical 
distribution for FGM [4], where 𝑟𝑖 determines the value of 

the function at the HV side (𝑟 = 0 m) and 𝑟𝑎 the value at 

the grounded side (𝑟 = 0.35 m), whereas setting 𝑐 =
0.0162, 𝑘𝑖 = 1.000036 and 𝑘𝑎 = 1.0102 leads to a factor 
of 1 for the prefactor function in the center of the spacer. 
The DNN is trained by a dataset generated by a surro-
gate model, where the parameter 𝒓𝒊 is varied between 

0.081 to 0.2 and 𝒓𝒂 between 0.1 and 0.229, which varies 
the factor of the electric conductivity between 1 and 30 at 
the HV and grounded side, for 4000 input points. The out-
put is the global maximum electric field value. The DNN 
is realized with an input layer with 2 input features (𝒓𝒊 and 

𝒓𝒂) with 32 output features, 2 hidden layers with 16 and 

8 output features and the output 𝑬𝐦𝐚𝐱. As an optimization 
algorithm Adam [6] is set, since it provided the most ro-
bust results and efficiency, the learning rate is 1∙10-4 and 
the batch size is set to 512. The loss is calculated by a 
root-mean-square error function and the DNN passes the 
training data set in 5500 epochs. The interpolation of the 
dataset by the DNN results in the lowest maximum elec-
tric field value for the parameter 𝒓𝒊 = 0.081014 and 𝒓𝒂 = 

0.15472. The electric field distribution with the application 
of those parameters is depicted in Figure 3. The electric 
field distribution is decisively lower and the maximum 
value of the electric field is decisively reduced from 7.91 
kV/mm to 3.44 kV/mm, which is a reduction of 56,5%. 

 

Figure 3: Electric field distribution with the application of 
optimized FGM based on DNN. 

3 Conclusion 

An optimization of a spatial electric conductivity distribu-
tion in an FGM application for a HVDC GIL simulation 
model was performed based on a deep neural network. 
A variation of parameters of the prefactor function, which 
determines the spatial distribution of the electric conduc-
tivity in the spacer material, were used to train the DNN 
model, with the global maximum electric field value as an 
output. The optimized parameters were applied in a sim-
ulation, with a decisive reduction of the electric field 
stress and a lower maximum electric field of 56,5%, prov-
ing the DNN as a convenient optimization method for 
FGM applications in numerical simulations. 
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